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Preface 

This books presents a complete overview of the computational aspects of 
life cycle assessment (LCA). Many books and articles have been written 
on LCA, including theoretical treatments of the entire concept, practical 
guidebooks to apply the technique, and concrete case studies in which LCA 
is applied to support decision-making with respect to environmental aspects 
of product alternatives. However, a good discussion of the computational 
structure of LCA is lacking. Knowledge is only partially documented, and 
what is documented is fragmented over diverse publications with mutual 
inconsistencies in approach, terminology and notation. 

The book is the result of several years of research, along with the teach­
ing of LCA at university classes and, not unimportantly, the development 
of software for LCA. This software has been designed to support the edu­
cation of LCA, but it has been applied in real-world case studies as well. 
The name of the software is CMLCA, which is an abbreviation of Chain 
Management by Life Cycle Assessment. This program can easily be used 
to reanalyse and further explore the ideas that are outlined in this book. 
Another important source for this book relates to the work involved in con­
necting input-output analysis (lOA) to LCA. Software for this - MIET, 
an abbreviation of Missing Inventory Estimation Tool - is also available. 
Some of the basic routines have been implemented in Matlab script as 
well. All three pieces of software can be accessed, free of charge, through 
http:/ /www.leidenuniv.nl/cml/sspjsoftware.html. 

In developing the ideas that are written in this book, we have benefited 
from discussions during the last few years with Jeroen Guinee, Gjalt Hup­
pes, Rene Kleijn and Ruben Huele at the Centre of Environmental Science, 
Leiden University, Rolf Frischknecht at ESU-services, ETH Zurich, Mark 
Huijbregts, formerly at the Interfaculty Department of Environmental Sci­
ence, University of Amsterdam, now at the Department of Environmental 
Science, Nijmegen University and Wang Hongtao at Sichuan University. 
Igor Nikolic provided support in discovering the advanced features of type-
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setting with 11\'!EX. The actual text, including possible omissions and er­

rors, however, is our responsibility. 
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Chapter 1 

Introduction 

This chapter introduces the aim of this book and motivates the importance 
of its topic. It does so in relation to a brief introduction of life cycle 
assessment (LCA), in which the various types of activities are outlined as 
well. Finally, the structure of the book is presented, along with a reading 
guide. 

1.1 Purpose of the book 

1.1.1 Aim 

This book presents and discusses the computational structure of life cycle 
assessment. Under the computational structure, we will capture the arith­
metical rules that are involved in carrying out an LCA study. However, 
this book is not a book with computational recipes only. Two other as­
pects receive a large emphasis as well. These are the background of the 
computational recipes, including argumentations and proofs, even though 
sometimes heuristically, references to related mathematical rules, and as­
pects that relate to the numerical implementation of the computational 
recipes. For this latter, the book will not provide computer source codes, 
but it will concentrate on the algorithmic aspects, even though some exam­
ple pieces of Matlab code are given in Appendix C. Thus the computational 
structure is understood here to cover the mathematical structure as well as 
the algorithmic structure. 

The computational structure will be formulated in terms of explicit 
mathematical equations. It will become apparent that use of matrix algebra 
provides an elegant, concise and powerful formalism. One should note that 

1 



2 Chapter 1 

the term 'matrix' in this book refers to a rigid mathematical concept (see 
Appendix A), that is defined in a linear space and for which operations such 
as multiplication, transposition and inversion are defined. Thus, Graedel's 
(1998, p.100) concept of matrix as a table of 5 x 5 cells in which the user 
is supposed to enter an ordinal score between 0 ("highest impact") and 4 
("lowest impact") is outside the scope of the present book. 

It will be assumed that the reader has a basic knowledge of the prin­
ciples, framework and terminology of LCA. Useful texts at varying levels 
of depth are provided by Lindfors et al. (1995), Curran (1996), Weidema 
(1997), Jensen et al. (1997), Hauschild & Wenzel (1998), Wenzel et al. 
(1998), UNEP (1999), Guinee et al. (2002), and others. However, a short 
overview of the basic elements of LCA is discussed in the next section. 
We also will, as much as reasonably possible, adhere to the !SO-standards 
for LCA (ISO, 1997, 1998, 2000). At certain points, departures will be 
necessary, and at many places, new concepts must be introduced. When 
appropriate, such cases will be argued. 

Throughout this book, it will be assumed that data availability is not 
a problem. In fact, the efforts and measurement, modeling and estimation 
techniques that are needed to obtain data is not discussed in this book. 
The central theme is how the data, once available, should be processed 
and combined to complete an LCA study. In the first few chapters, it will 
moreover be assumed that data are known exactly. This will allow us to 
present the basic structure in terms of deterministic equations. Chapter 6 
discusses extensively the topic of perturbation theory, which includes the 
statistical processing of stochastic data. 

1.1.2 Motivation 

The main motivation for writing this book is that the computational struc­
ture is an important topic for which no reference book is available. Below, 
we first seek to explain that indeed the topic is underemphasised, and then 
will demonstrate its importance. 

It is a remarkable fact that there is a large number of guidebooks for 
applying the LCA technique, but that the computational structure of LCA 
is hardly addressed in these books. To some extent, this is understandable: 
a person charged with carrying out an LCA study needs guidelines on which 
data to collect, which choices to make, and how to report assumptions 
and results. For the calculations, he or she will rely on LCA software, of 
which there is a large choice on the market (Siegenthaler et al., 1997). But 
this alleged lack of direct utility is not a decisive argument, since most 
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guidebooks on LCA discuss the backgrounds of, say, models for ecotoxicity, 
even though these models are not used in an LCA, because it is only the 
tabulated characterisation factors that are derived from such models that 
are used. So, lack of direct utility when executing an LCA is not a valid 
reason for excluding material on the computational structure in guidebooks 
for LCA. 

A further remarkable fact is that the computational structure is by and 
large overlooked by the theoretical literature on LCA as well. The equation 
which forms the basis for almost the entire book is 

s =A -lr (1.1) 

in which f is the final demand vector, A is the technology matrix (and 
A -l its inverse), and s is the scaling vector; see Sections 2.1 and 2.2 for 
a full explanation. In the standard literature on LCA, this equation, as 
well as the terms final demand vector, technology matrix and scaling vec­
tor are missing entirely. And the few sources in which the computational 
structure is discussed are used in a rather limited way. An example may 
illustrate this. In 1994, one of the authors published a paper (Heijungs, 
1994) that explicitly discussed some important elements of the computa­
tional structure of LCA. It introduced a matrix formalism towards the 
inventory analysis, and it gave a small example system with only four unit 
processes with a feedback loop that needed a matrix approach for a reli­
able solution. Six years later, in 2000, virtually all commercially available 
LCA programs were still unable to reproduce these results. Some of the 
programs refused to perform the calculation, others gave a totally wrong 
answer, and still others gave results that at best approximated the exact 
solution. 

One might think that the computational structure of LCA is a too ob­
vious issue to discuss in scientific publications. This is suggested by the 
formulation in the !SO-standard for inventory analysis: "Based on the flow 
chart and system boundaries, unit processes are interconnected to allow 
calculations on the complete system. This is accomplished by normalising 
the flows of all unit processes in the system to the functional unit. The 
calculation should result in all system input and output data being refer­
enced to the functional unit." (ISO (1998, p.10)). The forerunner of the 
!SO-standard, SETAC's Code of Practice (Consoli et al. (1993) ), provides 
some more information, but is still far from being exact and operational 
on that topic. Fecker (1992, p.4) writes in a book with the promising title 
How to calculate an ecological balance? that "the process parameters are 
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multiplied with the corresponding factor by which the process participates 

in the system." In this, he is one of the few authors that explicitly in­

troduce the concept of scaling factors, but he does not provide a method 

to obtain them in a concrete situation. The report of SETAC's Working 

Group on Inventory Enhancement (Clift et al. (1998)) ignores the topic 

entirely. Another famous SETAC-publication (Fava et al. (1991, p.15)) 

is more explicit: "The calculation procedure is relatively straightforward 

... The calculations can usually be performed by common spreadsheet soft­

ware on a personal computer." This is, however, no longer true. As we 

will see in subsequent chapters, the theory involves concepts such as linear 

spaces, singular value decomposition, the pseudoinverse of a matrix, and 

the condition number of a matrix. Of course, there are a few texts in which 

the topic is addressed. For an overview, see Section 1.3. 
It is the authors' experience that a good knowledge of the computational 

structure of LCA is important for several reasons: 

• it is a prerequisite in the construction of a method that really can 
claim to have scientific validity; 

• it is useful to gain an understanding of the logic of LCA in a university 

course; 

• it guides the design and implementation of reliable LCA software (so 
proves the aforementioned failure of most commercial programs to 
deal with system with feedback loops); 

• it may shed lead new light on established topics, such as co-product 
allocation; 

• it enables a further exploration of advanced topics, such as uncer­

tainty analysis. 

In conclusion, the aim of this book is to provide a comprehensive description 

of the present state of scientific knowledge of the computational structure 

of LCA. 

1.2 Elements of LCA 

The general ISO 14040 standard (ISO, 1997, p.2) defines LCA as the "com­

pilation and evaluation of the inputs, outputs and the environmental im­

pacts of a product system throughout its life cycle." The LCA technique is 
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structured along a framework with a number of steps or activities in each 
of these steps. There are four phases: 

• goal and scope definition; 

• inventory analysis; 

• impact assessment; 

• interpretation. 

A short summary of these phases follows. 
Goal and scope definition deals with the clear and unambiguous formu­

lation of the research question and the intended application of the answer 
that the LCA study is supposed to provide. Important elements of the 
goal and scope definition are the choice of the functional unit, the selection 
of product alternatives to be analysed, and the definition of the reference 
flows for each of the alternative systems. 

The inventory analysis is concerned with the construction of these prod­
uct systems. These systems are composed of unit processes, like industrial 
production, household consumption, waste treatment, transportation and 
so on. System boundaries and flow charts of linked unit processes are 
drawn for each alternative product system, and quantitative data as well 
as qualitative data for representativeness, etc. are collected during this 
phase. For those unit processes that are multifunctional, i.e. that provide 
more than one function, an allocation step is made. A final step of the 
inventory analysis is the aggregation of the emissions of chemicals and the 
extractions of natural resources over the entire product system, in such a 
way that a quantitative match with the system's reference flow is achieved. 
The final table of these aggregated emissions and extracted is referred to 
as the inventory table. 

The result of the inventory analysis is often a long list with disparate 
entries, such as carbon dioxide, nitrogen oxides, chloromethane and mer­
cury. The impact assessment aims to convert and aggregate these into 
environmentally relevant items. In particular, we mention here the step 
of characterisation, in which the inventory results are transformed into a 
number of contributions to environmental impact categories, such as global 
warming, acidification, and ecotoxicity. We also mention the optional nor­
malisation in which the characterisation results are related to a reference 
value, such as the annual global extent of these impacts. We finally mention 
the weighting, in which priority weights are assigned to the characterisation 
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or normalisation results, and which may result into one final score for each 
alternative product system. 

During the course of the LCA, many choices and assumptions must be 
made. Moreover, uncertainty may be introduced with every data item. The 
interpretation phase deals with the meaning and robustness of the infor­
mation obtained and processed in the previous phases. The interpretation 
may include comparisons with previously published LCA studies on similar 
products, uncertainty and sensitivity analyses, data checks, external com­
ments, and much more. It is also the place in which a final judgement and 
decision is outspoken. 

In using the LCA technique for carrying out an LCA study, one may 
distinguish several types of activities. 

• There are activities, related to the design of the system, the collection 
of data, the making of assumptions and choices, and so on. This, for 
instance, includes steps like the drawing of system boundaries, the 
collection of process data, the choice of allocation method, and the 
choice of an impact assessment method. 

• There are computational activities, related to transforming or com­
bining data items into a certain result. For instance, emission data 
are related to the functional unit, aggregated over all unit processes 
in the system, multiplied with appropriate characterisation factors, 
and so on. 

• There are activities that relate to the procedural embedding of an 
LCA project. Depending on the topic of study and the intended 
application, different stakeholders may be involved in certain ways. 
For certain applications, critical review by an independent expert is 
essential. 

• There are activities, related to the planning of the LCA. For instance, 
one can start with a small-size LCA, to explore the potentials and 
bottlenecks, and then to reiterate the steps in a more complete way. 
Uncertainty analyses can give rise to further reiterations. 

• There are activities, related to the reporting of an LCA. All types of 
requirements on what to report and how to report can be imposed to 
obtain transparent and reproducible reports. 

The !SO-standards for LCA do not clearly separate these different types 
of activities. However, emphasis is, apart from the presentation of frame­
work and the definition of terms, mainly on procedural embedding and 
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reporting. Most importantly for this book, the !SO-standards for LCA do 
not cover the computational structure. One can easily confirm this by ob­
serving the absence of mathematical equations. This leaves a large degree 
of freedom for the present book. Many new technical terms will be intro­
duced; examples are technology matrix and final demand vector. In fact, 
besides a presentation of the computational structure, this book aims to 
propose a standard nomenclature for a number of concepts; see Appendix 
B. Notation is also free, as there are no reserved symbols in the LCA­
community (except perhaps one older proposal by Heijungs & Hofstetter 
(1995)). Throughout this book a consistent notation will be used. It is 
summarised in Appendix B as well. A number of new non-mathematical 
terms are introduced; we mention in particular hollow processes (Section 
3.1), brands of economic flows (Section 3.4) and sleeping processes (Section 
3.8). Finally, for a few terms that do occur in the !SO-standards, we have 
found reason to introduce a different meaning; here we mention reference 
flows (Section 3.7.2) and grouping (Section 8.1.6). 

As already indicated, this book discusses the computational structure of 
LCA, without reference to the procedural embedding and without reference 
to the planning aspects. This means, for instance, that this book may well 
describe the mathematics of comparing product alternatives on the basis of 
a weighting procedure, while the !SO-standards state that such an activity 
is not appropriate. The point is that ISO's reluctance derives from proce­
dural grounds, while the mathematics is in itself without problems. The 
mathematics remains valid even when someone decides to operate outside 
the !SO-framework, or when the !SO-standards are changed in this respect. 

1.3 Background of the book 

Most method-oriented texts on LCA focus on formulating guidelines ( cf. 
Guinee et al. (2002)). In addition to that, there are many articles and 
reports in which specific topics are discussed, such as models for assess­
ing impacts of acidification or data quality. There are only few texts in 
which the computational structure is discussed. To the extent that they 
are relevant for the present book, their material has been included. Im­
portant references in this respect include Projektgemeinschaft Lebensweg­
bilanzen (1991), Heijungs et al. (1992), Moller (1992), Frischknecht et al. 
(1993), Heijungs (1994), Schmidt & Schorb (1995), Heijungs (1996), Hei­
jungs (1997), Heijungs & Frischknecht (1998), Huele & van den Berg (1998) 
and Heijungs & Kleijn (2001). 
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In addition to that, other references that are relevant throughout the 
text are on linear algebra. Many texts, at various levels of sophistication 
and rigour, are available. Apostol (1969), Stewart (1973), Gentle (1997) 
and Harville (1997) provide good and accessible reviews. Albert (1972), 
Jennings & McKeown (1977) and Golub & Van Loan (1996) provide more 
specialised texts at an advanced level. 

Finally, the topic of numerical analysis and computer algorithms is 
treated in many books, some emphasising the theoretical aspect and others 
providing easy-to-use computer codes. We have made use of the books by 
Jennings & McKeown (1977), Hamming (1986), Thisted (1988), Press et 
al. (1992) and Cheney & Kincaid (1999). 

1.4 Structure of the book 

1.4.1 Outline 

This book discusses the computational structure of LCA. Much of the dis­
cussion will be directed to the computational aspects of inventory analysis. 
While many books on LCA would be structured along four core chapters, 
each of them dealing with one single phase of the LCA framework, this 
book presents the material in a different way. There is no chapter on goal 
and scope definition (although the reference flow is introduced in Section 
2.1), and impact assessment and interpretation are treated in one single 
chapter (8). 

Chapter 2 presents the basic computational model for inventory analy­
sis. It introduces the representation of unit processes, economic flows and 
environmental flows, and it presents and solves the inventory problem: how 
to obtain the environmental flows associated with a functional unit. 

Chapter 3 further develops the inventory analysis. We will see that the 
basic model falls short in many practical cases. This failure has to do with 
various complications that distort the ideal required for the basic model. 
These complications are, most importantly, cut-off and multifunctionality, 
the second type of complication giving rise to the allocation problem. This 
chapter also explores how the basic model works for a number of difficult 
situations. 

Chapter 4 discusses advanced topics of the inventory analysis and is 
mainly intended for discussing very specific points. This chapter may be 
omitted without affecting the readability of the subsequent chapters. The 
same applies to Chapter 5 which ties the discussion to input-output analy­
sis, a tool that is familiar in economics for more than sixty years and that 



Introduction 9 

shares certain features with LCA. 
In Chapter 6, we abandon the idea of point estimates of data, and 

develop how the computational rules can be used to statistically deal with 
uncertainty. Both an analytical and a numerical treatment are included. 

Chapter 7 discusses analytical explorations of the data on the basis of 
theoretical considerations. This leads to summary measures of the structure 
of the data and their dependencies. 

All computational aspects beyond the inventory analysis are discussed 
in Chapter 8: impact assessment and interpretation. 

Chapter 9 briefly explores a more general theory for LCA, in which the 
usual simplifying assumptions of linearity and steady state are abandoned. 

A final chapter (10) is devoted to more information-technical topics: 
algorithms for the inversion of a matrix under special conditions, memory 
requirements, and so on. 

Some sections contain special topics that can be omitted without dis­
torting the readability of subsequent text. These sections are indicated 
with an asterisk (*). 

The book assumes that the reader has a basic knowledge of matrix 
notation and manipulation. A concise review of matrix algebra is provided 
as an appendix (A). The first few chapters require a smaller background 
in mathematics than the chapters later on do. Especially Chapter 2, which 
discusses the basics, has been written in a more accessible way, to make sure 
that the basics can be understood by a wide audience. Chapter 3 is already 
more involved, and especially Chapter 6 requires quite some background. 

1.4.2 Notation 

In this book, a consistent notation will be employed throughout. Appendix 
B gives an overview of the most important symbols and the name of the 
concepts they represent. Furthermore, we have adhered to the convention 
that italic letters (like x) indicate scalars, that roman bold lowercase letters 
(like x) indicate vectors and that roman bold uppercase letters (like X) 
indicate matrices. A superscript T indicates the transpose of a vector 
or matrix, a superscript -1 the inverse of a matrix, a superscript + the 
pseudoinverse of a matrix; see Appendix A for the definitions of these 
concepts. Other symbols that are placed after or on top of a symbol, 
like primes ( x'), hats ( x), dots ( x) and tildes ( x), are used to refer to 
another variable, and their meaning differs per occurrence. Sometimes, we 
will write a row vector for a column vector to save space, e.g. writing 
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x ~ ( 1 2 3 ) T instead of x ~ U ) 



Chapter 2 

The basic model for 
inventory analysis 

In this chapter, the elementary formalism of the inventory analysis will be 
developed. It is based upon the simplifications that have been discussed by 
Guinee et al. (2002, p.III-15 JJ.), i.e. a linear treatment of a steady-state 
situation. Approaches towards accounting for non-linearities and dynamic 
situations are discussed in Chapter 9. One could consider to start with the 
general model, and discuss the simplified model as a special case. This, 
however, would complicate the analytical treatment considerably, and it 
would moreover ignore that virtually all LCA studies, textbooks, software 
and databases are based on the simplified model. The general model is 
at present only an academic ideal, of which the practical applicability in 
concrete case studies is doubtful. 

2.1 Representation of processes and flows 

A first step in a formalised treatment is the construction of suitable sys­
tem for the representation of quantified flows in connection with unit pro­
cesses. For this, we introduce the notion of a linear space. A linear space 
is an abstract concept which allows us to uniquely represent a multidi­
mensional data point as a simple vector with a definite value of each of 
the co-ordinates. See, e.g., Apostol (1969) for an introduction into linear 
spaces. 

For instance, consider a unit process (or process in short), say, produc­
tion of electricity, which uses 2 litre of fuel to produce 10 kWh of electricity. 
Moreover, in doing so, it emits 1 kg of carbon dioxide and 0.1 kg of sulphur 

11 
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dioxide. A linear space can now help us to describe this unit process in a 

very concise notation. We adopt the convention that the first dimension 

represents litre of fuel, that the second dimension represents kWh of elec­

tricity, that the third dimension represents kg of carbon dioxide and that 

the fourth dimension represents kg of sulphur dioxide. In term of linear 

spaces, the basis is 

( 

litre of fuel ) 
kWh of electricity 

kg of carbon dioxide 
kg of sulphur dioxide 

(2.1) 

Then the co-ordinates of the unit process production of electricity with 

respect to this basis is a simple vector 

p= (f) (2.2) 

This will be referred to as the process vector for a particular unit process, 

in this case production of electricity. 
Notice that we have written a minus sign in front of the 2 for the 

dimension that represents litre of fuel. The minus sign is a conventional 
indication for the direction of the flow. In Cartesian space, a negative x-co­
ordinate indicates by convention a point at the left of the origin. Here, the 

negative co-ordinate indicates an input, while the other three positive co­

ordinates indicate outputs. We emphasise the conventional nature of such 

a notation. In LCA, like in Cartesian geometry, a different choice leads to 

the same results when consistently followed. 
Also notice that the vector that represents the unit process of elec­

tricity production has four co-ordinates in a definite order. We cannot 

interchange the elements of the vector, unless we change the order of the 

basis accordingly. Therefore, the order of the elements of the vector is fixed 

by convention as well. Again, this should be familiar from Cartesian geom­

etry, where the first co-ordinate often represents the horizontal direction 

and the second the vertical direction. 
A third type of convention is related to the choice of units. We might 

change the kg of kg of carbon dioxide into a mg. Of course, we can only do 

this if we change the co-ordinate 1 in the third row of the process vector 

into a 1, 000,000. 
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We will be involved with large systems comprising many different unit 
processes, like production of electricity, manufacturing of televisions, recy­
cling of aluminium and transportation of tomatoes. A second step is there­
fore the representation of such a system of unit process. Let us consider 
a second unit process, say production of fuel. Suppose that for producing 
100 litre of fuel, 50 litre of crude oil is needed, and that 10 kg of carbon 
dioxide and 2 kg of sulphur dioxide are emitted to the environment. A 
first thing to observe is that there is not yet an entry for crude oil in our 
four-dimensional linear space. A fifth dimension has therefore has to be 
added. Thus we change the basis into 

litre of fuel 
kWh of electricity 

kg of carbon dioxide 
kg of sulphur dioxide 

litre of crude oil 

(2.3) 

and have to adapt the process vector for electricity production accordingly 
into 

-2 
10 

PI= 1 (2.4) 
0.1 
0 

The co-ordinates of the additional unit process, production of fuel, is then 

100 
0 

P2 = 10 (2.5) 
2 

-50 

A particularly concise notation for representing the resulting system of unit 
process is 

-2 100 
10 0 

p = ( Pl I P2 ) = 1 10 (2.6) 
0.1 2 
0 -50 

We will refer to this as the process matrix. Observe that a new convention is 
needed to express the fact that the first column represents the unit process 
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of production of electricity, while the second column represents the unit 

process of production of fuel. Column vectors will be indicated as Pl, P2 

or Pj in general. An individual element of a process matrix can be referred 

to as (P)ij where i denotes the index of the row and j the index of the 

column. Observe that (P)ij = (pj)i = Pij· In the example, i runs from 1 

to 5 and j from 1 to 2. The process matrix is then said to be of dimension 

5 X 2. 
A third step is to partition the process matrix into two distinct parts: 

one representing the flows within the economic system, referred to as eco­

nomic flows, and one representing the flows from and into the environment, 

referred to as environmental flows or environmental interventions or inter­

ventions for short. In the example, the first two rows, representing litre 

of fuel and kWh of electricity, are flows within the economic system, while 

the last three rows, representing kg of carbon dioxide, kg of sulphur dioxide 

and litre of crude oil are environmental flows. ISO (1997) speaks of product 

flows and elementary flows respectively, but the distinction between eco­

nomic and environmental flows seems to be more popular. The partitioning 

leads to a partitioned matrix 

-2 100 

P=(~) 
10 0 
1 10 

0.1 2 
(2.7) 

0 -50 

Although this partitioning is not needed per se for the representation of 

unit process or entire systems of unit processes, it is a convenient step. 

Furthermore, it will turn out to be needed in the following steps. The 

matrix A that represents the flows within the economic systems will be re­

ferred to as the technology matrix. Matrix B will be called the intervention 

matrix, because it represents the environmental interventions of unit pro­

cesses. Partitioning in this way may lead to matrices and with an unequal 

number of rows. The number of columns of A and B is equal, and it is also 

equal to that of the unpartitioned process matrix P. 
A fourth step is more related to goal and scope definition than to in­

ventory analysis. It involves the specification of the required performance 

of the system. In general, a reference flow ¢ will be determined as one way 

of fulfilling a functional unit that is quite arbitrarily chosen. For instance, 

a reference flow for this example could be 1000 kWh of electricity. The 
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vector 

f = ( 10°oo ) (2.8) 

thus represents the set of economic flows that corresponds to this reference 
flow. Observe that we specify the complete set of economic flows, even 
though only one of these flows is the reference flow. The logic of using a 
co-ordinate system requires that we reserve an entry for every economic 
flow. In general, the only non-zero element of this vector, say the rth, is 
the reference flow: 

{ ¢ if i = r 
fi = 0 otherwise (2.9) 

Vector f will be referred to as the final (or external) demand vector, because 
it is an exogenously defined set of economic flows of which we impose that 
the system produces exactly the given amount. Later on, in Section 3.4.2, 
we will discuss the case of comparing alternative products with more than 
one reference flow. 

A final aspect of representation is the inventory table, i.e. the set of all 
environmental flows associated with the reference flow under consideration. 
How to find it will be the topic of the next section. For now, it suffices to 
discuss its notation. In the example co-ordinate system, we have three 
environmental flows. Even though some of these flows may be zero for a 
certain choice of f, we need to reserve vector elements for each of these 
flows. We will proceed to define 

(2.10) 

as a vector of environmental interventions, the inventory vector, where 91 
denotes the number of kg of carbon dioxide emitted by the total system, 
etc. The final demand vector and the inventory vector can be regarded as 
the aggregated external flows of the entire system. Stacking the two vectors 

q= (f) (2.11) 

provides an easy reference to this system vector. 
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2.2 The inventory problem and its solution 

So far, we have only discussed the representation of unit processes, systems 

of unit processes, reference flows, and so on. We did not calculate anything 

yet. In particular, we did not yet discuss how to obtain the values of 91 , 92 

and 93· A treatment of this leads to a discussion of what we will call the 

inventory problem. 
The two unit processes produce 10 kWh of electricity and 100 litre of 

fuel respectively. The reference flow is 1000 kWh of electricity. Reference 

flow and flows produced by the unit process do not match. We see that 

unit processes 1 and 2 produce 10 and 0 kWh of electricity, while the final 

demand is 1000 kWh. Obviously, we need to scale up unit process 1 by a 

factor of 100 in order to satisfy the 1000 kWh required. But it is equally 

obvious that the fuel requirement by that process will be scaled up by the 

same factor of 100, into 200 litre of fuel. This leads to an upscaling of the 

second unit process by a factor of 2, so that it produces 200 litre of fuel. 

This then matches exactly with the required 200 litre of fuel by the first 

unit process. There is no surplus nor a shortage, hence the system's flow 

of fuel is 0, precisely as was required by the final demand vector. 

Apart from the fact upscaling a unit process affects the economic flows, 

it affects the environmental flows in the same way. For instance, the emis­

sion of carbon dioxide by the first unit process is upscaled from 1 kg into 

100 kg. For the second unit process it is upscaled from 10 kg into 20 kg. A 

total system-wide emission of carbon dioxide of 120 kg is therefore found. 

In other words, the hitherto unknown 91 is found to be 120. For the other 

two elements of the inventory vector, similar calculations yield 92 = 14 and 

93 = -100. Recall that the minus sign indicates an input, in this case 

extraction of 100 litre of crude oil. 
A more formal treatment can now be given. First, we introduce a vector 

with scaling factors, the scaling vector, as a generalisation of the factors of 

100 and 2. We will indicate this vector by s and write in the example case 

s = ( :~ ) (2.12) 

For the first economic flow, fuel, a balance equation can be set up: 

(2.13) 

In the concrete case, this amounts to 

-2 X S1 + 100 X S2 = 0 (2.14) 
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This equation cannot uniquely be solved for 81 and 82. But there is a second 
balance equation available, for the second economic flow, electricity: 

(2.15) 

or with the coefficients inserted, 

10 X 81 + 0 X 82 = 1000 (2.16) 

Simultaneous solution of these two equations yields 

(2.17) 

A final step towards a generally applicable treatment is in terms of 
matrix solution. The system of equations 

can be written as 

{ an x 81 + a12 x 82 = !1 
a21 X 81 + a22 X 82 = h 

or even more concisely as 
As= f 

(2.18) 

(2.19) 

(2.20) 

Given that the technology matrix A is known and that the final demand 
vector f is known, the balance equation can, under certain restrictions which 
are to be discussed in Section 2.4, be solved to yield the scaling vector s: 

s =A - 1r (2.21) 

where A - 1 denotes the inverse matrix of the technology matrix A. In the 
example case, we have 

( -2 1000 ) A= 10 (2.22) 

and 

(2.23) 

Straightforward multiplication yields 

-1 ( 0 0.1 ) ( 0 ) ( 100 ) 8 = A f = 0.01 0.002 1000 = 2 (2.24) 



18 Chapter 2 

So, we have found a recipe to calculate the scaling vector for the unit 

processes in a system, such that the system-wide aggregation of economic 
flows exactly agrees with the final demand vector that represents the pre­

determined reference flow of the system. However, the inventory problem 

has not yet been solved completely, because the question was defined as to 

find the values of the system-wide aggregated environmental flows. 
The scaling vector provides a direct clue to the final step in solving 

the inventory problem. We must recognise that scaling of a unit process 

affects both the economic flows and the environmental flows. For the first 

environmental flow, carbon dioxide, we have 

In the concrete case, this amounts to 

91 = 1 X 81 + 10 X 82 

Inserting the values for 81 and 82, we find for 91 

91 = 1 X 100 + 10 X 2 = 120 

More generally, we have 

or in matrix notation 

{ 
91 = bu X 81 + b12 X 82 

92 = b21 X 81 + b22 X 82 

93 = b31 X 81 + b32 X 82 

g=Bs 

In the example case, we have 

Matrix multiplication gives 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

In principle, the inventory problem is now solved. There is a rule (s = 

A - 1f) that yields the scaling vector given a technology matrix and a fi­

nal demand vector. And there is a second rule (g = Bs) that yields the 

inventory vector given the intervention matrix and the scaling vector. 
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In certain situations, it may be useful to provide explicit formulations 
without matrix algebra. This leads to the following formulae: 

Vi : L aijSj = fi 
j 

for the balance equation, and 

\::/k : 9k = L bkjSj 

j 

(2.32) 

(2.33) 

for the elements of the inventory vector, z.e. for the environmental inter­
ventions 9k· 

An interesting substitution of variables can now be made. If the expres­
sion for the scaling factors is inserted in the expression for the environmental 
interventions, we find 

g = BA- 1f (2.34) 

Matrix multiplication, like ordinary multiplication, is an associative oper­
ation, hence we may rewrite this as 

(2.35) 

which we will write as 
g=Af (2.36) 

where we have defined the intensity matrix A as 

A= BA- 1 (2.37) 

This notation makes clear that the matrix A can be evaluated for a par­
ticular system of unit processes, and then be applied to any final demand 
vector, thus to any reference flow that emanates from the system. In the 
example we have 

( 
0.1 0.12 ) 

A = 0.02 0.014 
-0.5 -0.1 

(2.38) 

This matrix can, for instance, be applied to 

f = ( 10000 ) ; f = ( ~ ) ; f = ( ~0 ) ; 

( 10 ) ( -10) f = 1000 ; f = 0 ; etc. 
(2.39) 
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The meaning of these different types of final demand vectors will be dis­
cussed in Section 3.9. Using the matrix A implies that the scaling vector 
is not calculated. Even though the computation may be somewhat more 
efficient, knowledge of the intermediate results, in particular the scaling 
factors can provide a convenient tool for diagnosis of the results. Later on, 
in Section 2.6, we will also see that the scaling factors in some situations 
have a special meaning. 

2.3 General formulation of the basic model for 
inventory analysis 

The previous two sections have provided a view of the formalism and its 
rationale. But they have not provided a rigid formulation, and a scien­
tific foundation is lacking anyway. This section provides such a general 
formulation. Readers interested in a more heuristical exposition of the 
computational structure of LCA may wish to defer the material in this sec­
tion until they have gone through the other chapters, or they may decide 
to skip it all together. 

The general formulation is based upon the principles of deductive logic: 
concepts are defined by formal definitions, a priori properties are assigned 
by axioms, and new properties are derived by lemmas or theorems, requiring 
a formal proof. Consequently, the following text is rather terse. Argumen­
tations and illustrative examples are given in the previous sections. 

We must first define the main objects of study, and postulate some of 
their properties. These include process vectors and matrices, the scaling 
vector, the final demand vector, as well as the property of linearity and 
additivity. 

Definition 1 A process vector p is a vector in a linear space of which 
the basis represents flows of goods, materials, services, wastes, substances, 
natural resources, land occupation, sound waves, and possibly other relevant 
items. The coefficients of this vector represent the amount of these items 
absorbed or produced by a particular unit process. A negative coefficient 
indicates an input of the process, a positive coefficient an output of the 
process, and a zero coefficient indicates that the item is not affected by the 
process. Two subsets of flows are distinguished: those which come from or 
go to another process (the economic flows}, and those which come from or 
go to the environment (the environmental flows). 
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Definition 2 A process matrix P is a set of process vectors, juxtaposed 
to one another. It may be partitioned into a technology matrix A that 
represents the exchanges between processes, and an intervention matrix B 
that represents the exchanges with the environment. 

Axiom 1 Any process vector Pi may be multiplied with an arbitrary con­
stant Sj. In other words, processes represent linear technologies, and there 
are no effects of scale in production or consumption. 

Note that this axiom can in its turn be presented as a theorem when 
higher-level axioms are postulated; see Theorem 3 in Heijungs (1998). 

Definition 3 The constants Sj referred to in Axiom 1 may be stacked to 
form a scaling vectors. 

Axiom 2 Flows may be aggregated over various processes, paying respect 
to the sign. 

Definition 4 A final demand vector f is a vector of economic flows. The 
coefficients of this vector represent the amount of these items that a system 
under consideration should absorb or produce. 

With these basis ingredients, the inventory problem can be formulated 
according to Lemma 1. 

Lemma 1 Let A be the technology matrix of a given system. In order to 
let the system absorb or produce a final demand vector f, a scaling vector 
s should be found such that the condition 

As=f (2.40) 

is met. 

Proof Applying a scaling vector s to the system produces or absorbs a 
vector of economic flows f. For one arbitrary economic flow i, we have, 
from Axiom 1 and Axiom 2, 

(2.41) 

As this applies for all economic flows, it follows that 

f=As (2.42) 
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The system thus produces or absorbs this amount. When it is imposed that 
the system produces or absorbs f, one should find a scaling vector s, such 
that 

f=f (2.43) 

or equivalently 
f=As (2.44) 

Q.E.D. 

Theorem 1 The condition As = f referred to in Lemma 1, leads to a 
unique solution 

s = A-1r (2.45) 

provided that A is square and non-singular. 

Proof Substituting the expression (2.45) for s into the condition (2.40) of 
Lemma 1, we have 

(2.46) 

which shows that the expression for s indeed is a solution. The appearance 
of the -1 to indicate inversion is allowed only if A is square and non­
singular. In that case, linear algebra teaches us that the solution is unique. 
Q.E.D. 

Now, we proceed to define the inventory vector and the recipe how to 
find them. 

Definition 5 An inventory vector g is a vector of environmental flows. 
The coefficients of this vector represent the amount of these items that a 
system under consideration absorbs or produces. 

Theorem 2 Let B be the intervention matrix of a given system. With a 
given scaling vectors, the inventory vector g is given by 

g=Bs (2.47) 

Proof For one arbitrary environmental flow k, we have, from Axiom 1 
and Axiom 2, 

(2.48) 
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As this applies for all environmental flows, Theorem 2 follows directly. 
Q.E.D. 

This is, in fact, the entire axiomatic system for inventory analysis, at 
least for the basic case. Section 2.4 and Chapter 3 will discuss situations 
in which things are not so straightforward. In connection to Theorem 1, 
it may be noted that we have excluded the case that A is non-square or 
singular. In that case, there are two possibilities: either there is a solution, 
be it or not unique, that can be found by a different method; or there is 
not a solution, although there may be approximate solutions. 

2.4 Some notes on the basic model 

The basic model and its solution have been presented above for a very 
simple example case and in a generalised form using matrix notation. The 
main idea has been the systematic construction of a set of linear balance 
equations, one for each economic flow, with a number of scaling factors, 
one for each unit process. Matrix inversion has been introduced as a way 
to solve such a system of linear equations. However, it is not the only way 
to find a solution; see Section 4.1. Moreover, matrix inversion is a time 
and memory consuming operation, that is not easily accessible to those 
with insufficient mathematical training. It may under certain conditions 
be an operation that is numerically unstable, producing incorrect results; 
see Sections 6.6 and 10.2. Finally, in many situations, it is not directly 
applicable to LCA. Matrix inversion requires that the technology matrix 
is square and invertible. This is not automatically the case in situations 
involving 

• cut-off of economic flows; 

• multifunctional unit processes; 

• a choice between alternative processes; 

• closed-loop recycling. 

How to adapt the matrix approach is described in Chapter 3. Furthermore, 
the approach outlined above (and in Chapters 3 and 4) start from the 
assumption of complete certainty, whereas it is for sure that process data are 
often uncertain to some degree. The treatment of uncertainties is discussed 
in Chapter 6. Finally, the assumption of linear scaling of processes as well 



24 Chapter 2 

as the effective neglect of temporal and spatial patterns are subjects for 
discussion in Chapter 9. 

2.5 Geometric interpretation of inventory analy­
sis* 

Using the concepts of linear spaces suggests a link with Cartesian space, 
for which a geometric interpretation is readily available. Let us start with 
the economic flows. The basis for this subspace is 

( litre of fuel ) 
kWh of electricity 

(2.49) 

We can easily visualise the basis in a rectangular graph in which the first 

basis vector is ih = ( 1 0 ) T, represents 1 litre of fuel, and is shown as a 

vector to the right. The second basis vector ih = ( 0 1 ) T represents 1 
kWh of electricity and is shown as an upward vector. 

Then, the unit process production of electricity, PI, can be represented 

as a vector, starting from the origin ( 0 0 ) T and ending in ( -2 10 ) T. 

The unit process production of fuel, P2, also starts at the origin; it ends 

in ( 100 0 ) T. The notion of a linear space implies that vectors can be 
added with the parallelogram rule, and that vectors may be multiplied with 
a scalar number. See Figure 2.1 for an illustration of the two unit processes 
PI and P2 and their sumvector PI + P2. 

kWh of 
electricity 

litre of fuel 

Figure 2.1: Geometric interpretation of two unit processes and their sum 
in a two-dimensional linear space representing two economic flows. 
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In the example case, we had two unit processes. There was one addi­
tional item: the final demand vector f. It can be drawn in the graph as 

a vector starting from the origin and ending in ( 0 1000 ) T. The inven­
tory problem now consists of the question of finding the appropriate linear 
combination of unit process vectors, such that the resulting vector exactly 
coincides with the final demand vector. See Figure 2.2. 

kWh of 
electricity 

2P2 litre of fuel 

Figure 2.2: Geometric interpretation of how a linear combination of two 
unit processes PI and P2 add up to the final demand vector f. 

A final step in the geometric interpretation is the addition of the en­
vironmental dimensions. However, the full example would require a graph 
in five dimensions. Therefore, we will restrict the illustration to only one 
environmental flow: kg of carbon dioxide. We extend the graph with a 
projected axis to represent depth. The basis of the new space is thus 

( 
litre of fuel ) 

kWh of electricity (2.50) 
kg of carbon dioxide 

The basis vector is P3 = ( 0 0 II ) T represents I kg of carbon dioxide. 
The first unit process, production of electricity, ends in the point with 

co-ordinates ( -2 10 II ) T' the second one in ( IOO 0 IIO ) T. Now 
the system-wide aggregation. For the economic flows, this is the exoge­
nously determined final demand vector. For the environmental flows, this 
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is the inventory vector, which is not yet known. We could write these 

together as ( 0 1000 I ? ) T, where the question mark indicates that this 
co-ordinate is unknown. This three-dimensional aggregated vector has thus 
fixed values for the co-ordinates in the first and second dimension, but can 
temporarily assume any value for the co-ordinate in the third dimension. 

This corresponds with a straight line that passes through ( 0 1000 11 ) T, 

( 0 1000 I 0 ) T' ( 0 1000 I -1 ) T' etc. See Figure 2.3. Now, we can in­
terpret the inventory problem as finding a linear combination of the unit 
process vectors, such that the resulting vector falls on the line that is de­
fined by the final demand vector. 

/ 
/ 

/ 
/ 

/ 
/ 

kWh of 
electricity 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

kg of 
carbon dioxide 

litre of fuel 

Figure 2.3: Geometric interpretation of the inventory problem as the prob­
lem of locating the point on an axis parallel to the axis that defines the 
environmental flow (kg of carbon dioxide) and passing through the point 
that is defined by the final demand vector f. 

Recall that we have left out the environmental flows kg of sulphur diox­
ide and litre of crude oil for simplicity. If we add the fourth dimension, 
kg of sulphur dioxide, the final demand vector defines not a line in three 
dimensions, but a plane in four dimensions. And adding another dimen­
sion for litre of crude oil means that the final demand vector defines a 
three-dimensional object (a hyperplane) in five dimensions. 

The final geometric interpretation of the inventory problem is thus to 
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find a linear combination of the unit process vectors, such that the resulting 
vector falls on the hyperplane that is defined by the final demand vector, 
and to locate the exact co-ordinates of this resulting vector. 

2.6 An interpretation of the scaling factors* 

In Section 2.2 the notion of a scaling factor was introduced, as a factor 
which can serve to scale a unit process up or down. The idea is that a 
unit process is modeled as an activity that can be described with constant 
technical coefficients, i.e. representing a linear technology ( cf. Axiom 1). 
The inventory problem was formulated as a geometrical problem in a linear 
space: find coefficients s1, s2, ... , such that a linear combination of the vec­
tors that represent the economic part of the unit processes exactly matches 
with the final demand vector: 

SIPl + S2P2 + ... = f (2.51) 

This is only a valid interpretation if the vectors that represent the eco­
nomic part of the unit processes and the final demand vector are indeed to 
be represented in the same linear space, and that the meaning of the co­
ordinates, is therefore the same for unit processes and final demand. The 
scaling factors are then pure, i.e. dimensionless, numbers. There is, how­
ever, an arbitrary element involved in the way a unit process is represented. 
If a unit process is given as Pi, an arbitrary multiple c x Pi could serve as 
an equally good representation. For instance, one can represent the unit 
process of electricity production per 10 kWh of electricity, per 100 kWh of 
electricity, per 1.23 kWh of electricity, and so on. And if this unit process 
in the original representation receives a scaling factor s1, it would receive 
a scaling factor s1 / c in the revised representation. There is no preferred 
representation, and the scaling factors have no absolute meaning. 

It is, however, possible to revise the scheme a bit (Heijungs, 1998). 
This starts with the acknowledgement that the descriptive data of a unit 
process are almost never recorded per 10 kWh, per 100 kWh, per 1.23 kWh, 
etc. A convenient way of measuring and straightforward recording of such 
data is per unit of time. The inputs and outputs of a unit process can be 
measured during an hour, a day, or a year. The descriptive data of a unit 
process then assume a form like 3.15 x 1010 kWh/year or 10 kWh/second. 
Then the step of rescaling the data of a unit process to a convenient size, 
such as 10 kWh, is no longer needed. The final demand vector, however, 
remains unaffected by such a redefinition of the basis of the linear space 
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that defines the co-ordinates of the unit processes. It may still be 1000 
kWh of electricity. This then leads to a readjustment of the meaning of 
the scaling factors. In the previous representation, a scaling factor of 100 
meant that the arbitrarily rescaled unit process needed to be multiplied 
with an equally meaningless factor of 100. In the revised representation, 
the scaling factor bears a dimension: it is 100 second. Moreover, it can be 
interpreted as that the reference flow defined in the final demand vector 
requires that the unit process of electricity production is involved for 100 
seconds. The electricity generator is thus allocated, so to speak, for 100 
seconds to the function investigated. 

The advantage of the new representation is three-fold: 

• the step of scaling all unit process data to some convenient round 
number of output is not needed; 

• the scaling factors receive a clear meaning; 

• the process data can be entered in their actual extent, which may be 
convenient for the construction of databases that serve more purposes 
than LCA alone. 

A disadvantage is that the basis that defines the co-ordinate system is not 
any longer universally applicable to both unit processes and final demand 
vector. This then also implies that the geometrical interpretation of Section 
2.5 does not apply for this setup. 

2. 7 An interpretation of the intensity matrix* 

In Section 2.2 we have introduced the matrix A as 

A= BA-1 (2.52) 

and given it the name intensity matrix. Some comments are in order: what 
does the matrix mean, and whence the name intensity matrix? 

Let us first study the case of a technology matrix that consists of one 
number only. Let 

A=(10) (2.53) 

denote that the system contains one process which produces 10 kWh of 
electricity. Let us assume that the intervention matrix is 

(2.54) 
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which keeps to mean emission of 1 kg of carbon dioxide and of 0.1 kg of 
sulphur dioxide, and no in- or outflow of crude oil. Then 

(2.55) 

Applying this to a (degenerate) final demand vector 

f = ( 1 ) (2.56) 

representing 1 kWh of electricity, we find 

(2.57) 

We thus see that the meaning of the coefficient 0.1 for Au is that it repre­
sents the carbon dioxide intensity of electricity (in kg per kWh). Similarly, 
the coefficient 0.01 for A21 represents the sulphur dioxide intensity of elec­
tricity. 

This suggest to assign to A the interpretation of a matrix of environ­
mental intensity coefficients per unit of economic flow. However, this is too 
rapid a conclusion. Let us expand the technology matrix to the case of two 
processes and two flows: 

( -2 1000 ) A= 10 

Retrieving the intervention matrix 

one finds 

A= ( 
1 10 ) ( -2 100 ) -l ( 

0.1 2 10 0 
0 -50 

When applied to a final demand vector 

0.1 
0.02 
-0.5 

0.12 ) 
0.014 
-0.1 

(2.58) 

(2.59) 

(2.60) 

(2.61) 
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again representing 1 kWh of electricity, we find 

( 
0.12 ) 

g = 0.014 
-0.1 

(2.62) 

This is different from the g obtained for the case of one process and one 
flow, in spite of the fact that the specification of the process of electric­
ity production is almost similar. The difference can be interpreted as an 
increase of environmental interventions: 0.02 kg extra emission of carbon 
dioxide, 0.004 kg extra emission of sulphur dioxide, and 0.1 litre extra ex­
traction of crude oil (mind the removal of the minus sign for crude oil). 
The only difference in process specification is that the process of electricity 
production is assumed to consume fuel: 0.2 litre per 1 kWh electricity. We 
may also observe that the final demand vector that represents 1 litre of 
fuel, 

f = ( ~) (2.63) 

yields 

( 
0.1 ) 

g = 0.02 
-0.5 

(2.64) 

as inventory vector. Rescaled with a factor of 0.2, we find 0.02 kg of carbon 
dioxide, 0.004 kg of sulphur dioxide, and -0.1 litre of crude oil, which 
exactly accounts for the extra interventions of the delivery 1 kWh electricity. 
Thus, we arrive at an interpretation that the vector 

( 
0.12 ) 

A2 = 0.014 
-0.1 

(2.65) 

represents the system-wide (or cradle-to-grave) interventions of supplying 
1 kWh of electricity, i.e. one unit of economic flow number 2. Similarly, 

( 
0.1 ) 

A1 = 0.002 
-0.5 

(2.66) 

represents the system-wide (or cradle-to-grave) interventions of supplying 
1 litre of fuel. i.e. one unit of economic flow number 1 . 



The basic model for inventory analysis 31 

Hence, one may interpret a column of the intensity matrix as the system­
wide interventions for supplying one unit of the good or service that is 
referred to by that column. Altogether, it seems reasonable to assign to 
A the interpretation of a matrix of system-wide environmental intensity 
coefficients per unit of economic flow. We refer to Section 3.8.2 for a longer 
discussion. 


